A Climate Action Turning Point!

That's friend of PHIUS and visionary NYC architect Chris Benedict (l) with Katrin Klingenberg.

That’s friend of PHIUS and visionary NYC architect Chris Benedict (l) with Katrin Klingenberg.

On October 29th I was fortunate to attend the NYSERDA low carbon and zero energy Buildings of Excellence Awards at the Building Energy Exchange in New York City. What a terrific time for projects that are about to and that have employed PHIUS+ passive building standards as baseline to get to zero energy ready! I counted at least 10 PHIUS+ project teams in NYSERDA’s three categories, Early Design Stage, Substantial Completion and Completed, that were awarded up to 1 million dollars for their projects!The awards were announced on the 7th anniversary of super storm Sandy, not a coincidence, as a reminder for urgent climate action. Seven years later, NYC is leading by action and is putting itself firmly on the path of global leadership in building energy and resilience. Thank you to an amazingly dedicated NYSERDA team for making this happen!

The week before the event, I keynoted the Boston Passive House Massachusetts Symposium to talk about the evolution of the PHIUS+ certification suite for passive buildings, and why they provide such great value on the path to ZERO. Here as well, political action was taken to combat climate change: MassSave staff announced significant incentives for low carbon and zero energy buildings and significant additional incentives if project teams go for passive building certification for their hi-rise residential projects. Certification requests from Mass have increased manifold as a result. Massachusetts in not far behind NY State in political will, turns out.

And just a few weeks before the Boston event, it was gratifying to find that at the Getting to Zero Forum in Oakland, California, passive building was simply understood as the logical starting point on the path to ZERO, no questions asked. During one of the plenaries the ASHRAE speaker proudly introduced the new ASHRAE standards committee: 227p Passive Building Design Standard. That was great news and evidence that ASHRAE is moving on the topic.

During the lunch plenary on day one the National Renewable Energy Laboratory featured PHIUS board member Mary Rogero’s students presenting their Solar Decathlon winning PHIUS+ Source Zero energy school design. For the closing plenary, California’s Commissioner Andrew McAllister presented on his recently completed and only recently occupied zero energy passive house in Berkeley and the benefit of energy independence. He had electricity while PG&E had shut off power supply to prevent fires, a consequence of climate change, to most of Berkeley including the entire Berkeley Campus. He was followed by Greg Hale, from NYSERDA, who spoke about applying the Energiesprong passive plus zero energy retrofit approach that he is spearheading in NYS and other zero carbon measures taken by the city.

And while most of the building action seems to be happening on the East Coast, quietly behind the scenes advocates have been working hard to get passive building into codes all over the country. When PHIUS was first established our lofty mission was to make passive building code by 2020. As ambitious a goal that was then in 2007, we have made significant progress toward it, and have paved the path for national success. NY State has included passive building as an alternative compliance path into the next stretch code and Washington State is on a similar path. Massachusetts has included an alternative compliance path for passive buildings and verification tools (no double modeling required) and Washington, D.C. also has included an alternate compliance path for passive buildings in their about to be launched ZERO Energy Code.

Most significant of all those developments is the establishment of the ASHRAE 227p standards committee. If successful they’ll created a passive building design standard that takes the best pathways from all existing programs and develop an even better, easily adopted design standard globally. That committee has now started its so very important work. The ball is rolling! Stay tuned for more!

Exciting times, indeed!

 

 

 

 

Countering a policymaker’s concern regarding passive house

We recently heard from a PHIUS constituent who had these comments about an experience with a policy maker who was skeptical about passive building:

In recent discussions about building performance compliance options for our city’s Stretch/Green Code, a committee member raised a concern about a provision for passive house design in commercial projects. He thought that current modeling software isn’t reliable enough for reasonable accuracy and cited it as a “fatal flaw.”

Monitored energy use is tracking closely to WUFI Passive models.

Click on the image for a pdf report: Monitored energy use is tracking closely to WUFI Passive models!

Knowing that there are large and small commercial passive house projects being successfully built, I hope you can speak to his concern. The more specifically this can be addressed – the good and the bad – the better.  We are strong believers in passive house design but need to confidently understand how reliable the available technology is before adding it to our building codes.

Essentially, then, the question many policy makers have is this:

Is Passive House Certification too Risky for Code?

Short answer No.

PHIUS+ Certification is based on the same science, data, and energy programs that building codes are built on. However…

Our community is indeed successfully designing and certifying residential and commercial buildings to the PHIUS+ Passive House Standards.

We have two terrific resource sites for both applications and with great examples. Here are the links to them:

  • https://multifamily.phius.org/
  • https://commercial.phius.org/

WUFI Passive, the design/certification and energy modeling software, has proven to be accurate in predicting energy use. We have the largest pool of certified projects in North America and actual measured data is available for many of those projects.

Where we have measured data,we have found that on average we achieve modeled vs. measured results of +-7%, which is the best I have heard of in the energy modeling industry.

That said, there is much confusion out there regarding two passive house certifications. PHIUS Senior Scientist detailed the substantive differences between PHIUS+ and the European approach. In short, ours is a climate-specific passive building standard developed under a DOE grant for North America that has proven to produce very accurate predictions (here is a link to the NREL publication: https://www.nrel.gov/docs/fy15osti/64278.pdf).

The German Passivhaus Institute uses a different standard, not derived from North American climates but instead from only one central European climate (one set of standards for all climates in the world). They also use a different modeling tool, a spreadsheet called PHPP. They have to my knowledge very few projects certified to date in the commercial and large MF residential sector in North America and have not published any modeled vs. measured data.

We initially used their tool for our projects and found a significant difference in modeled vs. measured performance. Overheating in summer was also a problem. In our experience, the performance was off by 25-30% pretty consistently from what was predicted by PHPP. That’s why we switched to a different, more accurate methodology and modeling tool.

So, to the policy maker who raised the concern, I would agree that the PHPP and German standard do have a problem in North America. I do not expect that policy makers take my word for it, either. We encourage code and other officials to vet the standards and design tools carefully before including them. And to all of the PHIUS community who are fighting the good passive building fight, we will be happy to provide you data that proves the performance of the PHIUS+ standard and the WUFI-Passive modeling tool.

Kat

 

PHIUS+ 2018 Webinar Q&A

Screen Shot 2018-12-11 at 10.44.53 AM

PHIUS Senior Scientist Graham Wright and Certification Manager Lisa White answer questions that were submitted during and after the live PHIUS+ 2018 Webinar on November 8, 2018.

You can view a recording of the webinar at the PHIUS.org site.

*Note: Some questions have been edited for publication

Q: Has PHIUS started to look at overall GWP in the materials used to make these high performance buildings? To save the balance of the climate, reducing our emissions in the next 20 years is critical. Lots of XPS and spray foam make a low energy building but don’t do anything to help our climate goals.

A: The short answer is yes. We do have a GWP impact calculator for insulation. Its use is not required for project certification but we encourage it when we see large areas of XPS or SPF proposed. Our product certification program for construction systems has a requirement for a sustainability or health certification; there are several options recognized.

Q: Can you explain the exuberance concept?

A: We remain enthusiastic about the “tiny heating system” / “tiny heating bill” idea.

Q: Thanks for including Quebec Province! I believe in 2015+, all of North America was calculated according to a blanket value for cleanliness of the grid. Is 2018 adapted to different grids, and how do you deal with Quebec’s very cheap and clean hydroelectricity? Renewables are a tough sell here. Zero government incentives and at 7 cents/kWh, our energy costs would have to more than treble in order to make PV make financial sense.

A: In the standard-setting study itself we used the same factor all the time, but because the buildings were (almost) all electric, it canceled out. The PV generation is multiplied by the same factor as the usage, so source net zero is achieved with the same size PV array as for site net zero.

The philosophy is that CO2 emissions anywhere affect everyone everywhere. We all share one atmosphere, so by a principle of solidarity we should really use the world average source energy factor for electricity. That is, people with clean grids do not get to play “we’ve got ours” and use more energy. Even if your local grid is clean we want to drive additional action such as REC purchases that fund new clean energy projects. In certification we do allow the use of national averages, so we actually just request solidarity at the national level. Canada has a cleaner grid than the US overall, and thus Canadian projects will not have to take as many measures for net source energy reduction. The source energy factor for electricity in Canada is 1.96, whereas it is 2.8 for the US.

The electricity cost does affect some of the space conditioning criteria because higher energy prices justify more conservation measures and thus tighter targets. We calculate this with state-by-state averages, so Quebec projects will have less stringent targets than neighbors in Maine and Vermont.

 

Q: The word “townhouse” usually means a single-family building, but you seem to be using it differently.

A: The individual dwelling units are “single-family, attached”. That is, they share walls but not floor/ceiling. Speaking loosely, the whole row of attached units is the Townhouse, and the study building is 8 or 16 attached units.

Q: Is the mandatory minimum for window upgrades done because it wouldn’t be cost effective otherwise?

A: Yes. Window costs have come down but this still had to be forced in most cases. The starting points were still “in the money” though. There were a few times when the optimizer bought them on its own, but it took a long heating season and high energy price to motivate it. 

 

Q: Is this modeled EUI directly from WUFI Passive in the “Modeled vs. Measured” slide?

A: Yes, the WUFI Passive energy model used for certification.

Q: Do the new non-residential commissioning requirements apply to the common areas of residential buildings or only to all non-residential buildings?

A: TBD. Our current definition (for source energy target purposes) hinges on whether the spaces serve outside clients / customers or just the residents.

 

Q: Are you considering using the last 5 years of climate data vs ASHRAE to deal with global weirdness?

A: No, but we are working on future climate data for 2090 as an informational resource.

 

Q: Any comments on using low-iron glass (easily found in EU / just starting to appear in US)? Does the visible transmittance increase relative to ordinary US glass (which has a green tint to natural light)?

A: Alpen for a while had a low-iron glass option in their certified products, but they discontinued it.

 

Q: Instead of ignoring PV in competing with efficiency measures, why not look at PV with storage for the costs? This may not take care of seasonal differences, but it would take care of daily or weekly changes.

A: We may have have explored it if that was an option in BEopt, but it isn’t yet. Our current thinking is that what batteries do for you depends, in normal operation, on what the time-of-use rate structure looks like, and they are also good for you in outage situations. We are working on a calculation protocol for outages and waiting for utilities or other researchers to converge on time-of-use rate structure(s).

 

Q: Is there an ASHRAE 55 comfort analysis or PMV for PHIUS+?

A: The new window comfort calculator is based on relatively recent research on Predicted Percentage Dissatisfied specifically for draft at the ankle – it doesn’t just hark back to the PMV/PPD that was determined in 1970.

I (Graham) also wrote a paper for the 2016 conference looking at the radiant temperature effect of windows on comfort.

In certification we mostly take the same kind of simple view as in building code, e.g., “thou shalt maintain a dry bulb temperature set point of X and Y”. Sophisticated comfort analyses are more appropriate for workplace and nonresidential cases where clothing and metabolic profiles of occupants can be pinned down (as required by ASHRAE 55), and one might not have to worry so much about frail or sensitive occupants.

 

Comment: Adaptation is why I pursued CPHC in the first place!

Graham Wright: Thanks! Lisa presented on passive survivability at the Boston conference, and we will have more to say about this in the future.

Q: How does the new standard accommodate variable occupancy patterns/equipment usage in non-residential buildings?

A: With respect to the performance targets, as a first step, we will allow two different occupancies to be used to determine the annual demand targets vs. peak loads. Also, we can develop custom criteria for unusual situations (additional fee applies).

With respect to energy modeling protocol, it is already required to enter patterns for occupancy, ventilation and lighting, but this is mostly about getting the annual total energy right for source energy limit purposes.

 

Q: Please define HDD65, IGA, CDD50, TCD, IGCL and DDHR.

A: HDD65 = Heating degree-days, base 65 F;

IGA = Solar Irradiance, global, annual;

CDD50 = Cooling degree-days, base 50 F;

TCD = Temperature, cooling design day;

IGCL = Irradiance, global, cooling load design condition;

DDHR = Dehumidification design humidity ratio.

 

Q: If a project is considering registering under either 2015 or 2018, can we register under 2015 then change to 2018 (as circumstances change) without an additional registration fee?

A: Yes, you can always pursue a newer version of the standard. You are not able to pursue older versions if the contract date is later than the last day to submit under that older standard. In order to register for PHIUS+ 2015, the contract must be submitted before April 1, 2019.

 

Q: Are there updates to WUFI to accommodate the 2018+ standard? And when will it be available?

A: Yes, the next version of WUFI Passive will be released by the end of 2018. We will notify all of PHIUS’ mailing list.

 

 

 

 

 

 

 

 

From Twin Countries to Twin Cities: China is Making Strides in Bringing Passive Building Mainstream

Katrin Klingenberg, PHIUS Executive Director

 

Passive House Alliance China’s 3rd China Passive Building Summit in Shanghai was followed up by a one-day expert meeting and workshop. The group rode out together to old town Shanghai, a nice area of the city consisting of mostly low-rise buildings. The fall weather had now finally turned a little nippy and drizzlier than the days before, and I was happy to have worn my jacket that day. Shanghai is unique: for two months out of the year (one each in the spring and fall), the temperatures are on the cool side, requiring no cooling and almost no heating, but the humidity is still too high to be comfortable.

The workshop was organized by Passive House Alliance China and took place onsite at a high-performance multifamily retrofit project located in a high-end gated community. Upon our arrival we were welcomed into a beautifully designed lobby where refreshments were being served to the invited stakeholders representing the construction industry and building science field from different cities in China. Following lunch, we had the opportunity to tour several of the completed high-performance apartments and begin to delve deeper into high-performance construction methods in mixed/humid climates with a focus on the cities in the Yangtze Delta. The main focus was on large-scale multifamily buildings, a rather typical and ubiquitous building typology throughout China.

If China and the US are country climate twins, then Shanghai is a close twin to Houston’s southeast Texas climate with the exception that Shanghai gets a little bit more rainfall. The most important challenges for passive design space conditioning solutions in these cities are not the thermal loads – it’s the humidity! Thermal loads are easily reduced to very low peaks by using passive design strategies such as moderate amounts of insulation (4 inches of mineral wool for a larger scale buildings will suffice), balanced ventilation with very good energy recovery efficiencies, excellent windows (double pane with thermally-broken frames), and passive level airtightness. But the high humidity load from ventilation during summer and the shoulder seasons can only be reduced so far. A significant dehumidification load remains, often during seasons when little or no cooling is required, as was the case while we were in China.

Improvements to the building envelope to minimize heating and cooling peaks also effects the ratio of sensible to latent cooling loads – resulting in the latent load becoming equal to or larger than the sensible load. While in less efficient buildings the sensible load far exceeds the latent load and can be taken care of by traditional cooling equipment, in highly efficient passive buildings it is the latent load that is now equal to or even dominant (see examples from Beijing and Hong Kong in the graphs below). This poses a new challenge for low-load comfort systems.

sensible-heat-ratio

The graphs illustrate how the sensible heat ratio decreases if the building envelope is improved for the climates of Beijing and Hong Kong. (slide credit: Hartwig Kuenzel, Fraunhofer IBP, NAPHC2015 keynote)

Climate specific targets also matter a great deal in this climate. In mixed climates, the right balance between heating and cooling targets becomes critical to avoid over-insulation and overheating risks. Window performance in mixed/humid climates needs to strike the right balance as well in order to not inadvertently increase cooling loads. Windows need to be optimized for both cases, heating and cooling, to perform at their best. In the climate of Shanghai as mentioned previously, good double pane windows with a lower solar heat gain coefficient and thermally broken frames are typically the right choice to meet comfort targets and to avoid contributing to overheating. Accurate assessment of internal gains must take into account culture, lifestyle, occupancy, and other factors as they have a significant impact on the overall energy balance of high-performance passive buildings.

In the case of China for example, cooking plays a major role in the vibrant Chinese lifestyle and culture, as we were lucky enough to experience first hand as our gracious hosts showed us the best and most interesting dining spots around Shanghai. Food is central to the culture and if folks are cooking a lot of flavorful and spiced foods in their homes in a climate with significant cooling loads, they will want directly vented kitchen exhaust hoods! Grease, odors, and heat need to get captured and thrown out right at the source. I was impressed to see a novel solution to this problem as we toured the retrofitted apartments. Each unit had two kitchens: one being the “real kitchen” with the big stove, prep area, and fridges which were separated from the main living space by sliding doors to minimize the negative indoor air impacts on the rest of the apartment, and the other one adjacent was an open kitchen concept with a bar for entertaining! What a brilliant idea (if you can afford it)!

Now, what about energy modeling? We have often said that more complex climates really should be modeled using dynamic whole building energy balancing tools such as WUFI Plus. What makes the climate more “complex”? Cooling and dehumidification is needed when the exterior temperature gets closer to the interior comfort zone and begins to fluctuate around it. The warm season is dominated by diurnally reversing heat and moisture flows – in during the cooler nighttime, and out during warmer daytime temperatures. Add moisture into this back and forth and it becomes really complex. To be able to accurately predict how components and the whole building will perform from an energy and hygrothermal perspective, the designer really needs to perform a dynamic whole-building energy model based on hourly data to make the right choices. In contrast, in a heating dominated climate, exterior temperatures are swinging far enough away from the interior thermal comfort zone so that heat and moisture flows are mostly flowing out. Static models are accurate enough for simpler climates such as this.

The graphs illustrate conditions for both heating and cooling/mixed climates. The static monthly balance method as employed by WUFI Passive is sufficiently accurate to predict energy use in a heating dominated climate. In cooling/mixed climates such as Shanghai and Houston, dynamic whole-building energy simulation (WUFI Plus) is recommended. (slide credit: Hartwig Kuenzel, Fraunhofer IBP, NAPHC2015 keynote)

The graphs illustrate conditions for both heating and cooling/mixed climates. The static monthly balance method as employed by WUFI Passive is sufficiently accurate to predict energy use in a heating dominated climate. In cooling/mixed climates such as Shanghai and Houston, dynamic whole-building energy simulation (WUFI Plus) is recommended. (slide credit: Hartwig Kuenzel, Fraunhofer IBP, NAPHC2015 keynote)

Hygrothermal wall performance checks should be best practice for passive designs in mixed/humid climates to avoid any kind of condensation risk. As China ramps up their energy efficiency efforts in varying climates to near passive building levels and experiments with materials it will be critical that these models are created as project teams might not be familiar with just yet or have no long term experience with this risk management in mixed/humid climates, which can lead to critical and significant failures.

Now, what about the high-performance apartment tour, where are the Chinese at with their high-performance solutions today?

I was thoroughly impressed with what they had already in place in terms of execution, performance, details, mechanical solutions, and – to top it all off – a standardized monitoring interface centrally located in the home providing constant feedback on thermal comfort and indoor air quality to the home owner including fine particulate matter (PM 2.5) and inside to outside air quality comparisons. In Shanghai it is often the case that outdoor conditions are worse than indoors due to high pollution levels.

The project we toured was a retrofitted five-story brick building that had been upgraded by adding a 4-inch layer of mineral wool exterior insulation, airtight layer, and a new clay tile façade. The reported tested air-tightness result was 1.5 ACH, which is very respectable for a retrofit! Space conditioning was solved in a very elegant and most comfortable way: a separate energy recovery balanced ventilation system with appropriate filtration and dedicated integrated dehumidification took care of controlling ventilation humidity loads and outdoor pollutants (as evidenced on the screen of the monitoring interface in the living room, see opening photo). Space conditioning was handled by a separate point source solution consisting of hydronic heating and cooling integrated into the room’s ceiling. Radiant heating and cooling is a more costly, yet very comfortable high-end solution. Controlled infiltration and humidity loads are key to this solution to avoid condensation. So is awareness by the homeowner. They need to be put on notice that they can’t cool the home and leave the beautiful lift and slide high-performance balcony door open at the same time!

The developer reported that the passive house approach works financially for them for the high-end market. As you might expect, two bedroom apartments were selling in the millions, as would be the case for similar real estate in any other cosmopolitan global city.

Can passive go mainstream in China?

If I may offer my personal prediction: the Chinese have taken a surprising global lead in fighting climate change and have identified aggressive conservation goals for buildings as a valid strategy. The government has passed mandates to local jurisdictions to find appropriate cost effective solutions. If China addresses the cost optimization of passive building measures based on varying climates, construction paradigms, and energy costs in China similarly to what PHIUS did in the US, then they should certainly be able to generate design guidelines aimed at presenting the most economical path to zero. At the rate that they are going, I believe China will bring passive building to the mainstream before he US does because they have the political will, effective materials and components, knowledge of building science and energy modeling, and cost effectiveness strategies to get there.

What about the state of typical mainstream construction in China?

From what we saw, most apartments in Shanghai already have their own air-to-air heating and cooling heat pump unit sitting on their balcony. Pair that common solution with good airtightness, balanced energy recovery with dedicated dehumidification, moderate amounts of insulation and appropriate hygrothermal wall design, good windows, and you are there.

It would be great to see China taking the lead!

 

– Katrin

10th Annual NAPHC – best party of the year, maybe ever…

Wow – was that a successful conference! It has been a week and I am still processing it all. Chicago was unlike any other conference — things did not slow down in the office after it was all over, they rather accelerated. It indeed appears we have reached a tipping point.

From more than one person I heard that it seemed that the quality of work, detailing expertise and technical knowledge, size of projects and complexity of building types had reached a new high. And, compared to the early years, we were not just talking theory and intentions—but what people had done! Really impressive.

LEFT: Dr. Hartwig Künzel giving the Day 2 Keynote -- RIGHT: Sebastian Moreno-Vacca participating in the Architects' Hootenanny (L-R: T.McDonlad, T.Smith, J.Moskovitz, Sebastian, ?)

LEFT: Dr. Hartwig Künzel giving the Day 2 Keynote — RIGHT: Sebastian Moreno-Vacca participating in the Architects’ Hootenanny including (l-r): T.McDonald, T.Smith, J.Moskovitz, Sebastian, C.Hawbecker)

New modeling tools such as WUFI Passive (Technical keynote Hartwig Künzel, day two) are making building science interrelationships more visible and intuitively understandable. WUFI Passive is enabling CPHCs to optimize designs using “hygrothermal mass” (ever heard of that?) to optimize humidity loads and even to inform design decisions overall (as Sebastian Moreno-Vacca illustrated in his session) to create a unique architectural language! How cool is that! Science, heat fluxes and thermal dynamics begin to shape architectural form.

Dirk Lohan, Principal, Lohan Anderson -- Welcomes conference attendees to Chicago

Dirk Lohan, Principal, Lohan Anderson — Welcomes conference attendees to Chicago

Dirk Lohan—Mies Vander Rohe’s grandson, and an extremely accomplished architect in his own right—hinted at this development during his welcoming remarks.

“I believe that we will begin to see as beautiful what also is energy-conscious,” said Lohan.

Supported by the John D. and Catherine T. MacArthur Foundation

But maybe the most significant news is the explosive development in the multifamily affordable housing sector. It is seeing significant growth, interest and pilot developments going up in many places of the country. Thanks to the support from the John D. and Catherine T. MacArthur Foundation, we were able to make this our core topic for the conference and will be able to actively provide support to the affordable development community.

The pre-conference sessions included a daylong affordable housing Hootenanny that brought together successful affordable, multifamily housing project teams together who generously shared lessons learned and experience. Four different project teams presented during an intense full day. The morning and afternoon presentations drew full rooms of affordable housing developers who soaked up the information and had terrific, incisive questions

The same teams presented again during the core conference breakouts in a more condensed form for those who were unable to attend the hootenanny. In addition, there were more presentations on even bigger size affordable projects in progress:

  • A 101 unit affordable development in New York now under construction in the Rockaways (Steve Bluestone, Bluestone Org.)
  • A planned affordable retrofit of a 24 story historical brick building in Chicago (Doug Farr, Tony Holub from Farr and Assoc.), the Lawson House.
  • 24 story residence hall under construction in NYC (Matt Herman, BuroHappold)
L-R: Steve Bluestone presenting with Lisa White, Doug Farr, Matthew Herman

L-R: Steve Bluestone presenting with Lisa White, Doug Farr, Matthew Herman

Really amazing stuff.

Katherine Swenson

Katherine Swenson, Vice President, National Design Initiatives for Enterprise Community Partners — Day 1 Opening Keynote

Of course this growth has been fueled by forward-looking programs that recognize that energy efficient homes make so much sense for affordable housing developers/owners and dwellers. Katie Swenson from the Enterprise Foundation was a breath of fresh air–dynamic, positive, and motivating opening keynote. She explained that in her and her organization’s eyes energy is a critical part in assuring not just housing for people—but healthy housing! “Health is the new green,” she said, and of course passive housing delivers here with excellent comfort, indoor air quality and the added bonus of resiliency when the power goes out. Katie announced that the Green Communities criteria had just included PHIUS+ 2015 certification as one of the highest energy point options.

Other affordable housing agencies also have made a move: the Pennsylvania Housing Finance Agency (PHFA) awarded bonus points in its last round of selecting projects for Low Income Housing Tax Credits. More recently the New York State Homes & Community Renewal (HCR) effort was mentioned in a release regarding energy efficiency measures from the White House. Those agencies now directly encourage passive building standards in their RFPs. Remarkable!

Sam Rashkin, U.S. D.O.E. -- Closing Plenary Keynote

Sam Rashkin, U.S. D.O.E. — Closing Plenary Keynote

On the other coast. Seattle just amended their multifamily building code to allow additional floor area ration (FAR) for projects that meet the PHIUS+ 2015 criteria. That’s a significant incentive for developers.

Things are cookin’!

The core conference, as usual, was chock full of goodness. There were examples of how the new PHIUS+ 2015 climate specific passive building standards helped to optimize costs both here in North America (presentations by Chicago’s Tom Bassett-Dilley, Dan Whitmore, and) and internationally (Günther Gantolier from Italy). There were nuts-and-bolts presentations on wall assembly solutions (Tom Bassett-Dilley again), air and water barrier best practices (Marcus and Keith). And, the Builders Hootenanny—led by Hammer & Hand’s Sam Hagerman, focused on component challenges such as sourcing airtight FDA approved doors for commercial construction.

The U.S. DOE’s Sam Rashkin closed the conference with an unexpected message: he suggested that we needed to rename a few things to facilitate behavioral change. He posited that ZERH, LEED, PHIUS and other green building programs are essentially fossil fuel use rehab centers trying to rehabilitate an addicted nation and to show how it can be done differently. He received a standing ovation.

A few more comments on pre-conference workshops – three WUFI Passive classes drew almost 80 people and they all were super happy throughout the two days! Who would have thought! Happy people energy modeling!

LEFT: Marc Rosenbaum's lecture on Renewables -- RIGHT: Joe Lstiburek on Multifamily Building Science & HVAC

LEFT: Marc Rosenbaum’s lecture on Renewables — RIGHT: Joe Lstiburek on Multifamily Building Science & HVAC

Marc Rosenbaum single-handedly won first place in registering the most people for his class to connect passive principles with renewables to get to positive energy buildings (the logical next step).

Joe Lstiburek placed a close second (sorry Joe) and did a phenomenal job in covering ventilation concerns in large multifamily buildings. Rachel Wagner showed the most awesome cold climate details that I have ever seen. Galen Staengl took folks on a spin to design multifamily and commercial mechanical systems.

And Gary Klein topped it all off by reminding us that without efficient hot water systems design in multifamily, no cigar!

Thanks to all presenters and keynotes! You made this an excellent and memorable event.

I have not even mentioned the first North American Passive Building Project Awards—the entries were just beautiful projects—check out the winners here. I must mention the overall Best Project winner of 2015, as I believe this is pivotal: Orchards at Orenco. What a beautiful project, the largest fully certified PHIUS+ project in the country to date, a game-changer, underlining affordable multifamily projects on the rise.

I’m extremely happy that the Best Projects winners for young CPHC/architects was a tie, and both winners are women! Congrats to Barbara Gehrung and Tessa Smith! Go girls, you are the next generation of leaders!

L-R: Best Overall Project: Orchards at Orenco; Best Project by CPHC under 35 (tie): Island Passive House, Tessa Smith; Best Project by CPHC under 35 (tie): ECOMod South, Barbara Gehrung

L-R: Best Overall Project: Orchards at Orenco; Best Project by CPHC under 35 (tie): Island Passive House, Tessa Smith; Best Project by CPHC under 35 (tie): ECOMod South, Barbara Gehrung

One last note on a thing: Passive building people know how to party while devouring the most challenging, inspiring energy science, details, philosophies (Jevons paradox – Zack Semke’s fascinating lunch keynote) from the field.

And the architectural boat tour on Saturday to top it all off was almost surreal. When we were all out on Lake Michigan and the fireworks went off over the magnificent skyline, I thought, “that’s how we roll :).” Plus, the docent from the Chicago Architecture Foundation was a font of information, and even long-time Chicagoans learned a lot along the way. If you weren’t there, you missed the best passive building party of the year, maybe ever. (But we’ll try to top it, promise.)

Finally, for the crew that just can’t get enough, the Passive Projects Tour on Sunday was, as always, an enormous hit. Tom Bassett-Dilley and Brandon Weiss put together an array of completed and in-progress projects that generated a buzz at every stop. Thanks to Tom and Brandon and to PHA-Chicago for all your help!

Cheers!

Kat