Building a ZERO Carbon Future, Together!

Katrin HeadshotPhius Co-Founder and Executive Director Katrin Klingenberg wrote this week’s blog post in advance of her “Zero Energy and the Future of Phius” webinar on Sept. 14. It covers a variety of topics related to Phius’ work and the expanded vision of the organization.

“The west is on fire, and the east is drowning.”

Those attention-grabbing words were the first thing I heard when I turned on my TV the other day.

“The levees held, but the power grid folded”

That was a headline from the day after hurricane Ida swept across Louisiana. Most of the state was left without power; temperatures in the aftermath were predicted to rise into the 100s, all after a ton of rain and flooding. The combination of high temperatures and humidity is life-threatening — on top of all the other hardships brought on by the storm.

And then there was the Texas winter with the grid folding and people and pipes freezing in homes…

The urgency is clear. At our most recent Phius board retreat there was consensus: we are in dire straits climate-wise — it is now or never.

Since its inception, Phius’ vision has had a North Star: to create a carbon-neutral, healthy, safe, and just future for everyone by mitigating the climate crisis. And our mission is to do just that by making passive house and building standards mainstream.

The vision was extended to using passive house and building principles as the basis for all zero-energy and carbon designs. We added the Phius Source Zero certification program in 2012. Net zero is a good first step, but we need to revise the framework. In practice, net zero isn’t enough. 

The conclusion we at Phius have reached — following the thought leadership of our Senior Scientist Graham Wright — is that we need to aim to reach absolute zero in short order to avert the ultimate climate crisis. And that is absolute zero as per the original definition of zero – the absence of a measurable quantity.

A New Brand

We are upping our game on multiple levels in order to emphasize our renewed commitment to solving the ZERO-carbon puzzle for buildings. 

New Brand Same Phius GraphicWe started by reimagining the Phius brand. We are updating its look and making products and messages more relatable without sacrificing what we are known for: scientific rigor, precision, quality assurance, proven guidance, and performance. We are also unifying and expanding our suite of certifications for buildings, products and professionals. We are upping the ante on benefits to our professional members under the Phius Alliance leadership and yes, we are creating exceptionally cool swag to encourage everyone to join our tribe and make it our lifestyle together! Together, our community is creating momentum in the market — and having fun with it!

We also re-organized ourselves internally in more efficient ways over the last year, invested in a new website and a CRM, architecture. And we doubled our staff — to aim for greater, faster and increasingly exponential impact and service for our stakeholders. 

In addition, we are making dedicated efforts to reach out to communities beyond the building industry, to explain why what we do matters to everyone. Renters and owners all have a stake in what we do, and we are all one or the other. We want to give everyone an opportunity to get involved. It is up to all of us now! Join us!

Expanded Vision

Over the last decade, Phius has become the global leader in defining cost-effective and climate-optimized, passive house and building standards. Phius certified projects are now coming in at little or no cost premium compared to conventional buildings. Phius also leads in professional training, certification, and workforce development. We also provide an element critical to mainstream adoption: Quality assurance and risk management.

The building sector accounts for 40 percent of carbon emissions, and is key to achieving emissions reduction goals. Passive house and building principles have been, and will continue to be, CORE to our efforts. In that spirit, the formerly known PHIUS+ building certifications have been renamed and expanded. 

PHIUS+ will now be referred to as Phius CORE (before renewables) and PHIUS+ Source Zero will now be Phius ZERO (based on CORE), and will extend to netting out emissions on an annual basis. New passive house and building retrofit certifications are in the offing as well. Phius CORE REVIVE and Phius ZERO REVIVE, as well as a new commercial building certification called Phius CORE COMM and Phius ZERO COMM will be introduced in 2022. 

Phius certifications have grown exponentially around the continent in recent years. Policy progress nationwide has been impressive to say the least. We are in Tarrytown, New York, for PhiusCon 2021 (formerly North American Passive House Conference) to celebrate the leadership of New York State/NYSERDA in formulating an aggressive climate action plan — a process which Phius helped inform. Other states, such as Massachusetts, have modeled their plans after New York’s. Phius’ pre- and fully certified unit count in Massachusetts over the last few years alone is impressive.

Phius Housing Units (In Process or Complete)

 

The Phius Alliance has expanded nationally, and the global network continues to grow. Phius projects have now been completed or are under way in many countries with varying climate zones. The Phius professional training has been translated into Japanese and has been taught this year successfully in Japan by Phius partner PHIJP.

The last decade was focused on figuring out the building part of the decarbonization equation (mission accomplished — solving for climate, cost, comfort). Now it’s time to expand beyond the building itself. We see Phius buildings as valuable capacitors of the new, renewable grid. They are low-load buildings that have the ability to load-shift and shed, which is immensely beneficial to the optimization of the overall grid design and resilience. 

Phius has begun to assess and measure the benefits of low-load buildings for the overall grid design, including micro and nano grid models. We call this initiative Phius GEB (Phius Grid-interactive Efficient Buildings) led by our Associate Director Lisa White. A pilot for a microgrid Phius community certification is underway. Buildings plug into the grid, and new opportunities for synergies and resilience arise. Design for the best result does not stop at the building envelope or lot line. 

Our new teal-colored logo symbolizes this expanded vision. It is a closed loop symbolizing whole systems design on all levels, aiming at harvesting adjacent system synergies: “The whole is greater than the sum of its parts.” The color teal represents clarity of thought, rejuvenation, open communication and integrity. 

Same Phius

While Phius will be steadily expanding its zero-carbon framework beyond its hallmark passive house and building standards, we will maintain our core competencies of aiding in design, building, policy writing and quality assurance. We are working to solidify and upgrade our foundational programs. Certification staff has doubled and processes are being refined. We are working on getting even better at what we already do well!

The Phius focus has evolved to the broader task of decarbonization. We’ll do so with the same scientific rigor and attention to detail as before. Our goal is the next level of systems optimization so we as a society can make real-time ZERO carbon (not just net) a reality soon!

We hope you’ll join us and continue to trust us to pave the way for the future of decarbonization strategies. There is still lots to do, so let’s get to it!

It’s Here! The Phius Certification Guidebook v3.0

SONY DSCIn this week’s blog, Phius Associate Director Lisa White introduces the Phius Certification Guidebook v3.0 and explains how to get the most out of the newest guidebook iteration.

The Phius Certification Guidebook is the one-stop-shop for all things related to the Phius project certification program.

The guidebook contains information ranging from Tips for Designing a Low Cost Passive Building to Energy Modeling Protocols and What to Avoid. It continues to evolve alongside Phius’ growing certification program and standard updates. 

Guidebook CoverOne great reason to certify a project is to share knowledge with the passive building community, which accelerates growth. This guidebook is the keeper of that knowledge as well as lessons learned from the expanding base of certified projects. The Phius Certification team receives a myriad of questions from project teams related to unique circumstances and first-time design decisions that often require developing new guidelines and protocols to be applied on future projects — and those end up in the Guidebook. On top of that, the detailed review of projects throughout design and construction illuminates opportunities for the certification team to improve the guidance we provide to our constituents.

Version 1.0, released five years ago to support PHIUS+ 2015, clocked in at 87 pages. Version 2 followed to support PHIUS+ 2018 at 157 pages, and the most recent update, Version 3, supports Phius 2021, with 190 pages. The guidebook is a key resource for Phius professionals — but we’re often told it’s too long! I’m certain it can feel much shorter, and be incredibly useful, if you know how to navigate it. Anyone can get around a big city with the right map!

View this Table of Contents: Updates Summary which outlines what is new and updated in v3.0.

The document is split into 8 main sections followed by appendices.

The Sections

  • Sections 1 & 2 contain high-level information that is invaluable to first-time project teams and building owners/clients.
  • Section 3 is arguably the most important section, outlining all the certification requirements. Under Phius 2021, there are substantial updates to this section, most notably outlining the requirements of the performance and prescriptive paths side by side, as well as comparing and contrasting how each path handles items such as passive and active conservation strategies.
  • Sections 4 & 5 are key for setting expectations and understanding the workflows and fees associated with the certification process. There is a great high-level graphic showing three phases of certification steps at the beginning of section 4.
  • Section 6 is chock full of detailed energy modeling protocol. This section is laid out in order of the WUFI® Passive tree structure, guiding modelers top down with information ranging from early design defaults to detailed inputs for unique situations.
  • Sections 7 & 8 outline monitoring building performance as well as additional certification badges available. 

The Appendices

    • Appendix A is a consolidated resource about renewable energy. It explains how it can be used in the calculation of source energy use, and guidelines for procuring off site renewable energy.
    • Appendix B is likely the most often overlooked section, while also the appendix most referenced in project certification reviews. This appendix outlines the prescriptive approach to achieving moisture control in opaque assemblies. This most recent update splits this appendix into four types of guidelines: general, for walls, for roofs, and for floors. Do yourself a favor and vet the assemblies used on your next project (certifying or not!) against the guidelines listed here.
    • Appendices C & D are carried over from the previous version, outlining how to assess when a cooling system is recommended (App C) and internal load equipment tables for non-residential buildings (App D).
    • Appendices E, F, & G are great resources for the Phius Certified Rater or Verifier.  Appendix E is the Phius Certified Rater/Verifier manual. It outlines detailed technical inspection and field requirements, post-construction requirements, as well as how to maintain or renew the professional credential. Appendix F describes the procedure to prepare the building for airtightness testing, while Appendix G provides the onsite testing requirements for multifamily buildings.
    • Appendix H describes the Phius 2021 target setting updates, similar to what was found in the previously released “Standard Setting Documentation”
    • Appendix I is new to this version, and holds important information — most notably tips for passive building design about keeping costs low, assembly & window selection, and ventilation systems.
    • Appendix J talks about Co-Generation on-site, and how it affects the source energy factor for natural gas or grid electricity used on-site (depending on how the co-gen is prioritized). This is carried over from a previous version.
    • Appendix K is brand new, outlining definitions and requirements for electric vehicle charging infrastructure to supplement the requirement outlined in Section 3. EV capability is required in some fashion for all residential Phius 2021 projects.
    • Appendix L is also brand new and only applies to Phius CORE projects, as it describes electrification readiness requirements for combustion equipment. As a reminder, fossil-fuel combustion on-site is only permitted for Phius CORE projects, and not allowed for projects pursuing Phius ZERO or Phius CORE Prescriptive.
    • Appendix N closes out the document with normative information. Most notably, N-7 describes many of the underlying formulae for the Phius CORE Prescriptive path which is brand new to Phius 2021. It also contains the formulas and calculation methods used for lighting and miscellaneous electric load calculations, for example.

General Tips

  1. Utilize the Table of Contents and click to the section you need.
  2. Use the ‘find’ function (Ctrl+F) when in doubt of where to look to search for keywords. If taking this route, take note of what section your results are in – for example, is it a requirement or just informative?
  3. Bookmark the Guidebook link! (And follow Phius’ newsletters to be sure you’re aware when new versions are released).
  4. If you are the…
    1. Building Owner/Client — read Sections 1.1-1.4 and Appendix I-1 and review the graphic on the first page of Section 4.
    2. Project Team Member — read through Section 3 one time in its entirety if Phius Certification is a goal of the project. It’s only 18 pages, there are tables and pictures, and you can make it an excuse to have a beer.
    3. Project Submitter — read through Section 4 one time to set expectations, you will be happy you did. Also note Section 2.2, “Yellow Flag” items.
    4. CPHC / Energy Modeler — bookmark Section 6 for reference as you work through the WUFI Passive model.
    5. Phius Certified Rater/Verifier — bookmark Appendix E & F.
    6. One who loves the nitty gritty of passive building — print it, read it cover to cover.

Each iteration of the Guidebook reflects the aggregate knowledge gained by your efforts. Thank you! Feel free to use the comments section below for suggestions and questions.

Phius and Housing Equity: We Can Do This

What do we mean when we say equity in housing? Is it providing a place for all unhoused populations to live? Is it creating enough resources so that everyone has housing security, no matter their class, race, or age? What about high quality housing?

Finch Cambridge, an affordable housing project that won Best Overall Project in Phius' 2020 Design Competion.

Finch Cambridge, an affordable housing project that won Best Overall Project in Phius’ 2020 Design Competion.

Homes and apartments built to the Phius standard are airtight, energy efficient, super insulated, and low maintenance. They are comfortable, quiet, and provide a quality of life. These dwellings provide hard-to-find clean, high quality air, because the ventilation brings in fresh, filtered air and exhausts the stale air, something the coronavirus pandemic has shown is essential to mitigate spread of the virus. Better indoor air quality produces better health outcomes for people with chronic conditions like asthma.

Does your definition of housing equity include the quality of housing? It does for Phius.

Comfortable, well-built, and sustainable homes do not have to be for only the upper class. This is a policy issue. The cities and states of our country owe it to low-income citizens to provide them with a home that keeps them safe, does not strain their finances, and improves their quality of life. Affordable multifamily passive housing has proven time and again that it can be achieved at the same cost as a less sustainable or less reliable home. Single-family homes are being delivered at costs that range from 5 to 10 percent more than conventional buildings. Everyone should live in housing that is reliable and resilient.

Affordable housing, how do we define that? Usually it means housing built for lower-income individuals and families, those on a tight budget. It should also mean housing that is affordable to maintain and to heat or cool. It is not affordable if the occupants have to make a choice between paying for food and paying their utility bills. Multifamily buildings built to the Phius standard use 40-60% less energy than a comparable building built to code, resulting in similar reductions to utility bills.

Homes built to the Phius standard are resilient and reliable. In 2021, the state of Texas froze when its power grid failed. The information from the passive houses we have from Texas show that the temperatures in the building never came close to freezing. Families would have been able to stay in their home and no pipes would have burst, saving hundreds if not thousands of dollars in repairs and replacement.

Imagine living in a home that maintains its temperature no matter the season outside; that weathers severe temperature swings, and costs you less money to live in. Did you feel your stress levels lower just a bit? Don’t your children deserve to live like that? Doesn’t everyone’s child deserve that? How about your parents too?

The infrastructure can be created. This country can do it for its people.

How do we do this? Reach out to your city council, to the people who represent you on the most local level, to educate them about the benefits of passive building to the community.

Many states, like Massachusetts and New York, already have incentives for energy efficient homes. In Pennsylvania, 7 Phius certified projects, representing over 350 units of affordable housing, have been built and shown to be cost-effective. Incentives in Massachusetts have led to the construction of 8 Phius low-income projects with almost 550 units. These projects have come in at between 1.5% and 2.8% above building code. Massachusetts, building on this success, just passed a progressive energy bill that will push it’s already progressive buildings sector forward.

The change is possible and we all deserve it, including those who never even seem to get a piece of the pie.

PHIUS+ 2021 Source Energy Factor for Grid Electricity

PHIUS+ 2021 will include a change to the source energy calculation for grid electricity to more accurately reflect future grid conditions and better weigh the impact of electricity versus natural gas use on site.

In past versions of PHIUS+, the source energy factor for grid electricity was defined by the Energy Star Portfolio Manager and was determined based on past generation and consumption data from the EIA. The calculation methodology accounts for the total primary fuel needed to deliver heat and electricity to the site, including conversion losses at the plant as well as transmission and distribution losses incurred to deliver electricity to the building. Under PHIUS+ 2018, the source energy factor for grid electricity for the U.S. was 2.80, which was an average of the EIA reported data from 2012-2016.

With the release of  PHIUS+ 2021 the calculated factor for the United States grid electricity is 1.73 which reflects a 2050 outlook. 

Figure 1: U.S. power sector evolution over time for the NREL Mid-case scenario

Figure 1: U.S. power sector evolution over time for the NREL Mid-case scenario

Calculating a future source energy factor for the United States electric grid electricity required the combination of three data sets: 

(1) The projected future electricity generation mix, which was taken from NREL’s Mid-Case Scenario for 2050.

(2) Fuel conversion energy factors per generation type from the EIA.

(3) Total system losses from transmission, distribution and storage, taken from eGRID2018 and NREL’s future grid mix scenario.

A detailed description of the calculation methodology and corresponding data sources can be found in the PHIUS Tech Corner article. Read the full article here.

 

EPA Indoor airPLUS and Radon Resistant Construction

0Today’s guest blogger is Tony Lisanti, PHIUS+ QA/QC manager. 

One of the prerequisite programs required for PHIUS+ Certification is the EPA’s Indoor airPLUS Program.  Born out of a need to minimize indoor air pollutants, the EPA dove-tailed this program with the ENERGY STAR Labeled Homes Program, which is also a prerequisite for the home or dwelling unit to earn both Indoor airPLUS and PHIUS+.  This serves to ensure that the dwelling unit is relatively tight, insulation is properly installed, the HVAC systems are properly sized, and bulk moisture throughout the building assembly is properly controlled.

Indoor airPLUS then takes indoor air quality to the next level. Integrating the Construction Specifications and Checklist requirements into the design, homes/dwelling units can then be verified to ensure greater precautions are taken for moisture control and dehumidification, air intakes are protected from birds and rodents, HVAC systems are kept clean, better filter media is used, and potential sources of moisture and contaminants are vented to the outdoors. Additionally, HVAC systems and ducts are prohibited in garages, pollutants from combustion equipment are minimized, and low VOC products are used.

One of the unique and important aspects of Indoor airPLUS is the requirement for radon-resistant construction measures in EPA Radon Zone 1. If you are not familiar with the Radon Zone map, it can be found here:  https://www.epa.gov/radon/epa-map-radon-zones.

Radon is a naturally occurring radioactive gas that can cause lung cancer. In fact, the EPA estimates that 21,000 deaths each year in the U.S. are attributable to radon exposure. The EPA has very good resources to read up on the health risks of radon. Their site can be found here: https://www.epa.gov/radon/health-risk-radon#head.

So why should PHIUS stakeholders be concerned with this? As mentioned above, PHIUS relies heavily on prerequisite programs such as ENERGY STAR and Indoor airPLUS. Since the airtightness standards for PHIUS Certified projects are up to 10 times more stringent than a typical code-built home, dilution of the indoor air cannot occur as readily. PHIUS ventilation requirements go well beyond those of systems found in typical Code built or even Energy Star Labeled homes. Good ventilation design, whether for code or for PHIUS starts with source control, i.e. minimizing the source of contaminants along with proper ventilation.

An example of a passive radon system.

An example of a passive radon system.

In high risk areas such as Radon Zone 1, EPA Indoor airPLUS requires installation of a passive radon system, at minimum. EPA also recommends utilizing active radon systems to further reduce radon concentrations in the home, although this is not yet an Indoor airPLUS requirement. The most modern radon standards are developed through an ANSI-accredited consensus process by the AARST Consortium (American Association of Radon Scientists and Technologists). EPA recommends following the ANSI/AARST CCAH Standard for 1-2 family dwellings and townhouses (max. total foundation area of 2500 sq. ft.) or the ANSI/AARST CC-1000 Standard for larger foundations, which often apply in multifamily buildings. However, the key components of a passive radon system for the purposes of Indoor airPLUS verification are succinctly outlined in Item 2.1 of their Construction Specifications.

ANSI/AARST will soon publish updated standards to provide guidance for the design and installation of two radon system options in new low-rise residential buildings. These systems, passive and powered, are designed to reduce elevated indoor radon levels by inducing a negative pressure in the soil below the building. The practice provides design and installation methods through soil depressurization systems that can be installed in in any geographic area.

Each of the two options consists of soil gas collection and a pipe distribution system to exhaust these gases. The first standard is for the design of passive radon reduction systems, sometimes referred to as a “radon rough-in” (ANSI/AARST RRNC). The second newly updated standard (anticipated in early 2020) includes details for a fan-powered radon reduction system, as well as radon testing (ANSI/AARST CCAH). Passive systems can result in reduced radon levels of up to 50%. These standards suggest that when radon test results for a building with a passive system are not acceptable, the system be converted to fan-powered operation. Typically, the action level is 4 pCi/L (Picocuries per liter). If the tested radon level exceeds 4pCI/L, then a fan is added to further depressurize the soil and positively vent the gas to the outside.

Recently, the EPA Indoor airPLUS team sent out this Technical Bulletin. The Technical Bulletin provides simple guidance on the installation of passive and active radon systems. Please pay particular attention to the drawings in the Bulletin, and note that the active system depicted has the fan located in a vented attic. This is outside the pressure/thermal boundary of the home. This has special significance with homes/buildings constructed to PHIUS Standards, because often, the attic space is WITHIN the pressure/thermal boundary of the home. Therefore, the fan cannot be located in the attic and must be outside the pressure/thermal boundary. The reason for this is, should there be a failure on the discharge or pressurized side of the fan, the building can actually be filled with radon gas.

Some other precautions that include a tight seal at the slab and vapor barrier to the vertical riser. Additionally, ensuring the riser is clearly labeled as “RADON” to minimize the chance that a plumbing waste line will be accidentally connected to it in the future is also important.

Tony Lisanti CEM, CPHC
PHIUS+ QA/QC Manager

With thanks to Nicholas Hurst from the EPA Indoor airPLUS Team