Building a ZERO Carbon Future, Together!

Katrin HeadshotPhius Co-Founder and Executive Director Katrin Klingenberg wrote this week’s blog post in advance of her “Zero Energy and the Future of Phius” webinar on Sept. 14. It covers a variety of topics related to Phius’ work and the expanded vision of the organization.

“The west is on fire, and the east is drowning.”

Those attention-grabbing words were the first thing I heard when I turned on my TV the other day.

“The levees held, but the power grid folded”

That was a headline from the day after hurricane Ida swept across Louisiana. Most of the state was left without power; temperatures in the aftermath were predicted to rise into the 100s, all after a ton of rain and flooding. The combination of high temperatures and humidity is life-threatening — on top of all the other hardships brought on by the storm.

And then there was the Texas winter with the grid folding and people and pipes freezing in homes…

The urgency is clear. At our most recent Phius board retreat there was consensus: we are in dire straits climate-wise — it is now or never.

Since its inception, Phius’ vision has had a North Star: to create a carbon-neutral, healthy, safe, and just future for everyone by mitigating the climate crisis. And our mission is to do just that by making passive house and building standards mainstream.

The vision was extended to using passive house and building principles as the basis for all zero-energy and carbon designs. We added the Phius Source Zero certification program in 2012. Net zero is a good first step, but we need to revise the framework. In practice, net zero isn’t enough. 

The conclusion we at Phius have reached — following the thought leadership of our Senior Scientist Graham Wright — is that we need to aim to reach absolute zero in short order to avert the ultimate climate crisis. And that is absolute zero as per the original definition of zero – the absence of a measurable quantity.

A New Brand

We are upping our game on multiple levels in order to emphasize our renewed commitment to solving the ZERO-carbon puzzle for buildings. 

New Brand Same Phius GraphicWe started by reimagining the Phius brand. We are updating its look and making products and messages more relatable without sacrificing what we are known for: scientific rigor, precision, quality assurance, proven guidance, and performance. We are also unifying and expanding our suite of certifications for buildings, products and professionals. We are upping the ante on benefits to our professional members under the Phius Alliance leadership and yes, we are creating exceptionally cool swag to encourage everyone to join our tribe and make it our lifestyle together! Together, our community is creating momentum in the market — and having fun with it!

We also re-organized ourselves internally in more efficient ways over the last year, invested in a new website and a CRM, architecture. And we doubled our staff — to aim for greater, faster and increasingly exponential impact and service for our stakeholders. 

In addition, we are making dedicated efforts to reach out to communities beyond the building industry, to explain why what we do matters to everyone. Renters and owners all have a stake in what we do, and we are all one or the other. We want to give everyone an opportunity to get involved. It is up to all of us now! Join us!

Expanded Vision

Over the last decade, Phius has become the global leader in defining cost-effective and climate-optimized, passive house and building standards. Phius certified projects are now coming in at little or no cost premium compared to conventional buildings. Phius also leads in professional training, certification, and workforce development. We also provide an element critical to mainstream adoption: Quality assurance and risk management.

The building sector accounts for 40 percent of carbon emissions, and is key to achieving emissions reduction goals. Passive house and building principles have been, and will continue to be, CORE to our efforts. In that spirit, the formerly known PHIUS+ building certifications have been renamed and expanded. 

PHIUS+ will now be referred to as Phius CORE (before renewables) and PHIUS+ Source Zero will now be Phius ZERO (based on CORE), and will extend to netting out emissions on an annual basis. New passive house and building retrofit certifications are in the offing as well. Phius CORE REVIVE and Phius ZERO REVIVE, as well as a new commercial building certification called Phius CORE COMM and Phius ZERO COMM will be introduced in 2022. 

Phius certifications have grown exponentially around the continent in recent years. Policy progress nationwide has been impressive to say the least. We are in Tarrytown, New York, for PhiusCon 2021 (formerly North American Passive House Conference) to celebrate the leadership of New York State/NYSERDA in formulating an aggressive climate action plan — a process which Phius helped inform. Other states, such as Massachusetts, have modeled their plans after New York’s. Phius’ pre- and fully certified unit count in Massachusetts over the last few years alone is impressive.

Phius Housing Units (In Process or Complete)

 

The Phius Alliance has expanded nationally, and the global network continues to grow. Phius projects have now been completed or are under way in many countries with varying climate zones. The Phius professional training has been translated into Japanese and has been taught this year successfully in Japan by Phius partner PHIJP.

The last decade was focused on figuring out the building part of the decarbonization equation (mission accomplished — solving for climate, cost, comfort). Now it’s time to expand beyond the building itself. We see Phius buildings as valuable capacitors of the new, renewable grid. They are low-load buildings that have the ability to load-shift and shed, which is immensely beneficial to the optimization of the overall grid design and resilience. 

Phius has begun to assess and measure the benefits of low-load buildings for the overall grid design, including micro and nano grid models. We call this initiative Phius GEB (Phius Grid-interactive Efficient Buildings) led by our Associate Director Lisa White. A pilot for a microgrid Phius community certification is underway. Buildings plug into the grid, and new opportunities for synergies and resilience arise. Design for the best result does not stop at the building envelope or lot line. 

Our new teal-colored logo symbolizes this expanded vision. It is a closed loop symbolizing whole systems design on all levels, aiming at harvesting adjacent system synergies: “The whole is greater than the sum of its parts.” The color teal represents clarity of thought, rejuvenation, open communication and integrity. 

Same Phius

While Phius will be steadily expanding its zero-carbon framework beyond its hallmark passive house and building standards, we will maintain our core competencies of aiding in design, building, policy writing and quality assurance. We are working to solidify and upgrade our foundational programs. Certification staff has doubled and processes are being refined. We are working on getting even better at what we already do well!

The Phius focus has evolved to the broader task of decarbonization. We’ll do so with the same scientific rigor and attention to detail as before. Our goal is the next level of systems optimization so we as a society can make real-time ZERO carbon (not just net) a reality soon!

We hope you’ll join us and continue to trust us to pave the way for the future of decarbonization strategies. There is still lots to do, so let’s get to it!

Chicago Regulation Change Provides Opportunity for Phius Professionals

Al Mitchell

Al Mitchell

Phius Technical Staff Member Al Mitchell wrote this week’s blog post, which discusses the recent change in regulations related to coach houses in Chicago, and how designing these new buildings to Phius standards is a win-win for all parties.

The City of Chicago has lifted a nearly half-century ban on accessory dwelling units (ADUs), opening up a door for some people to build additional units on their property. The pilot program for ADU construction pertains to rentable units, occupiable by relatives, tenants, or even to be used as additional space from the primary home. There are two types of ADUs acknowledged by this regulation: a detached dwelling unit, such as a coach house or apartment on top of the garage, or a conversion unit, such as a built-out attic or basement.

However, there are a handful of caveats to consider. First, the allowances for ADUs, whether coach houses or conversion units, are limited to select pilot zones. There are five pilot zones: North, Northwest, West, South, and Southeast. These zones cover portions of 25 of the 77 Chicago community areas. Each area has a few special requirements for different types of ADU. For example, the North and Northwest zones can have a coach house built on the property before a primary house is built, while the other three zones require a primary house to be built on the lot before a coach house can be built. In the West, South, and Southwest zones, buildings must be owner-occupied in order to add a conversion unit. All ADUs in Chicago are to be rented for a minimum period of 1 month, and there is a requirement for a certain number of affordable units on larger properties where more units can be added.

 

Blog Pic 1This offers a great opportunity for people to add value to their property, create flexible living spaces (especially to take advantage of the benefits of multi-generational housing) or build a unit that can provide additional income for the owner while providing right-sized, cost-effective housing for another person. Approximately 70% of the lots in Chicago are 25 feet wide and face broadside south, making the applicability of this format broad. The aim of this blog is to make the case for building these newly allowed accessory dwelling units following the Phius passive building standards to create comfortable spaces, save energy and operational costs, and provide spaces that can weather inclement weather conditions, especially during a failure of space conditioning.

Analysis

Conversion units like the ones proposed in Chicago, would likely require a complete building retrofit to achieve the maximum cost and energy saving potential. This study is going to focus on detached coach houses, of maximum permitted dimensions. This comes at an apt time for Phius, as 2021 has marked the release of a user-friendly and streamlined prescriptive compliance path, as well as the performance target curves have been reworked to include allowances for small living spaces (in response to the tiny home craze).

Looking at coach house potentials, four cases were selected for evaluation. Three of the cases represent a single-story unit, one in the place of the garage, one pushed forward with open parking on the alley, and one built on top of the garage. The fourth case is a two-story coach house with no garage. The smaller units are studios, with no bedroom considered, one occupant, and the two-story coach house has one bedroom and two occupants. The standard kit of appliances is a dishwasher, refrigerator, and an induction range. Electric resistance water heaters are used in the base cases and a split heat pump system provides space conditioning.

The base cases follow code minimum constructions and windows per IECC 2018.  An envelope airtightness of 0.31 CFM50/sqft was used to match typical construction. The Phius CORE Prescriptive Path follows the prescriptive requirements per Chicago – Midway airport, and uses the default airtightness of 0.04 CFM50/sqft. The prescriptive path windows are whole window U-Values, and are set based on the required prescriptive comfort standards. Per the water heater efficiency requirements, the water heater was upgraded to a small heat pump water heater. The performance path uses 0.06 CFM50/sqft as the required airtightness metric, and follows the same window set as the prescriptive path. A heat pump water heater was used.  The other opaque assemblies were backed off from the conservative prescriptive path to meet the required calculated targets. Please reference the table below for the envelope performance specs in the study.

 

Case Wall R Roof R Slab R Window-U Airtightness CFM50/sf
IECC 2018 18.4 44.0 10.6 0.3 0.31
Phius 2021 CORE Prescriptive 40.0 71.0 21.6 0.16 0.04
Phius 2021 CORE 26.8 52.0 17.2 0.16 0.06
Blog Pic 2

 

Conclusion

The cases designed to Phius standards prove to reduce the space conditioning loads significantly, as shown in the Space Conditioning Results Chart. These outputs are specific per area, making it easy to compare different building sizes. Per the Source Energy Chart, the Prescriptive and Performance averages save 35% and 30% respectively. These source energy savings directly reflect the anticipated savings on an electrical power bill for the tenant of these coach houses.

Coach houses built to these passive building guidelines project significant energy savings that will directly benefit the occupants of these buildings, on top of the other comfort and passive survivability (what happens during a power failure – stay tuned for a part two blog). The required upgrades to meet the performance path is principally based around better windows and airtightness, saving on other insulation requirements per the prescriptive path. 

Blog Pic 3

The Phius Difference: Custom Energy Design Targets for Heating and Cooling — The Key to Zero

Katrin Klingenberg -- Co-Founder & Executive Director, Phius (Passive House Institute US)

Katrin Klingenberg — Co-Founder & Executive Director, Phius (Passive House Institute US)

The Klingenblog’s namesake, Katrin Klingenberg, wrote this week’s blog, examining custom energy design targets and how Phius’ approach to them sets the organization apart in the quest for Zero.

Designing zero energy and zero carbon buildings today can be cost effective if guided by the appropriate targets for investment in efficiency first. These targets are cost-optimized limits on heating and cooling loads.

The limits on heating and cooling loads are set to guide the design to a cost-optimal investment in passive conservation strategies: insulation (the appropriate amount, properly installed), dedicated continuous air, water, and vapor control layers, mitigation and avoidance of thermal bridging, high-performance windows (with appropriately tuned solar gain) and dedicated balanced ventilation with filtration and energy recovery. These principles ensure building resilience, health, comfort, safety and durability.

The cost optimization to set the targets focused on achieving the highest source energy savings (relative to a code baseline) for the least total cost (including the up-front cost of energy-saving measures, and ongoing operational costs). It factors in the cost of materials and the cost of energy supply in each particular region to calculate the sweet-spot. At some point, up-front conservation measures don’t pencil, and that’s when any additional investment should shift to active conservation strategies or active renewable energy generation systems.  These climate-optimized, project-specific targets for thermal performance define the cost-effective sweet spot on the path to zero.

The thermal performance targets are known in the industry as “Annual Heating Demand” and “Annual Cooling Demand.” They are expressed in kBTU per square foot per year or — in the metric world — in kWh per square meter per year. They are, in concept, similar to the Energy Use Intensity (EUI), but refer to the delivered heating and cooling energy required by the building. These annual space conditioning demands can only be met with passive measures and dial in the thermal performance of the building. Once those are met, a conservation-first focused total energy budget is set to guide investment in active measures. This limit is also project-specific, and can be expressed in the EUI we are all familiar with — the amount of energy used by a building per unit of floor area per year, including space conditioning and all other energy uses. That EUI can be converted into an emissions equivalent as needed to determine offsets needed to achieve zero carbon. Voila! It’s that easy!

Phius is the only building certification program that has developed such design and certification targets. They are available on the Phius website in an easy-to-use calculator. Choose climate, enter building square footage and occupancy, and you get your optimized design parameters! They are also built into the easy-to-use design and certification tool, WUFI(R)  Passive.

Before supercomputing, managing such a complex, dynamic system of variables to generate custom targets as a designer was impossible. The task of energy optimization was handled by specialized engineering firms doing the modeling — a costly and external process. Small budget projects such as single-family and small multifamily projects could not take advantage of it. Even larger projects often took the prescriptive path to eliminate the cost of custom optimization. 

Today, the reliable and detailed accounting of emissions in the building sector is necessary on a per-building basis. Many cities have passed climate action plans with extremely specific emissions reduction targets to meet over the next few decades. The Phius standard now provides an easy-to-apply, cost-effective design, and certification methodology alongside accurate accounting of carbon emissions for any building in the building sector.

With some training, architects can now easily perform these calculations themselves and build it into their design workflows right from the beginning, making sure their design is on track from start to finish.

The framework for the Phius standard today was conceived in 2015, updated in 2018, and refined again in 2021. Many municipalities have leaned on and incentivized the Phius framework to meet their climate action plans. At the forefront was New York State Energy Research and Development Authority (NYSERDA) in the State of NY. They designed a proof-of-concept program early on called Buildings of Excellence. The agency now offers cost and performance data for representative groups of completed projects using varying techniques for low energy design and accounting.

C3RRO, a third-party consulting firm under the leadership of Florian Antretter, has graphed the NYSERDA cost and measured performance data for various approaches and graciously made it available to Phius for publication. The results are proving the concept. 

Graph

As envisioned, the Phius Standard, design, and certification methodology has led to projects that not only perform the best, but are also constructed at minimal additional upfront cost. (PHI projects that use a single target for heating and cooling limits in all climates also perform reasonably well but are more expensive to build).

The new comprehensive guidebook explaining the Phius Standard design and certification methodology is now available here.

We are well on our way to (Phius) ZERO emissions!

Green/Blue Roofing System Question Answered

 

GWPhius Senior Scientist Graham Wright weighs in on an interesting proposal for a green/blue roofing system and its feasibility for use on a Phius project.

The Question: “…The design team is considering a Green/Blue roofing system. Some of these systems / designs show rainwater being stored underneath the continuous insulation on the roof. We wanted to run these design concepts by you to understand what questions we should be asking and what information we should be gathering in order to model this, whether you have encountered this and have thoughts on how to model / approach this, and/or whether we should steer away from any of these designs altogether.”

The Answer: As far as I can tell, Green roofs and high insulation are not compatible, or, this is a research area.

The concept shown has only a thin layer of insulation. The Opti-Green system in the WUFI database is about R-3 overall. This research paper from 2012 looked at an R-22 roof.  

Green-Blue Roof Graphic

So, first thought: you probably could not do a large area of this and hope to meet the energy targets. It might be OK to experiment with it in a small area. They should ask if what is being proposed has any track record. Has this ever actually been built before in this climate?

Second thought: There is also clearly a tradeoff with the insulation positioned where it is. On the one hand, placing it above the water helps keep the water from freezing. On the other hand, how does the water get up through the insulation to the plants? If there are perforations, then the “fastener correction” calc should be done to derate the insulation. This becomes more troublesome the thicker the insulation is. Also, water flowing and draining away beneath the insulation will defeat its winter performance. This will happen whenever it rains enough during the heating season, and there should be another derating for that.  

Third thought: I think the idea of these is there is an evaporative cooling benefit in the summer. So it might make sense for a cooling-dominated building in the right kind of climate — e.g. one with warm summers but not too dry summers — so you get free rain water and don’t have to pump water up for irrigation. In terms of both energy savings and heat island mitigation, I think a foam-insulated and cool-membrane roof would compete very well with this concept and would be a lot lighter. If they are thinking of doing a whole roof this way, I would suggest doing a comparison to such a baseline case on both cost and simulated performance by WUFI Pro.

 

The article about green roof modeling mentioned in the WUFI help is here

Energy and Buildings

Volume 145, 15 June 2017, Pages 79-91

Energy and Buildings

A hygrothermal green roof model to simulate moisture and energy performance of building components

D.Zirkelbach S.-R.Mehra K.-P.Sedlbauer H.-M.Künzel  B.Stöckla

Early morning decarb musings…from the bottom up…join the conversation!

Note: After contributions from a number of fantastic guest bloggers, Katrin Klingenberg makes her return to the Klingenblog to give readers an inside look at her quest to achieve carbon neutrality both in her own life, as well as with her work at Phius.

It is June of 2021. Sipping my morning tea, reflecting. It has been a year of thought and reassessment and remembrance, letting go of the old ways…quiet before the storm…I feel grateful almost …the pandemic was harsh…training wheels for what is to come…are we ready?

In interviews with journalists, I often get asked: what was/is your core motivation? Why did you start Phius?

And my response is always along these lines: “I was looking for carbon neutrality in all aspects of my life; to take personal responsibility in light of a crisis, wanting to do my share, love and respect for the commons, a desire to distribute resources fairly so that all people can live in peace, balance and harmony.”

And then, as an architect, I recognized that buildings represent a big chunk of our global carbon emissions. Phius was my chance to be part of the solution. My professional commitment since 2002: I could no longer continue to add to the planetary carbon bill with my work. That effectively meant setting up every building to be capable of achieving zero and positive energy.

Climate change is an existential crisis that no one will be able to talk their way out of. There are no planet hospitals with a line out the door that impress on us how bad this is, no healthcare providers ringing the alarm. Well, actually…scientists and environmentalists have been sounding the alarm since the 60s. Society stuck its head in the sand and decided on doing fossil fuel biz as usual as if there was no tomorrow (pun intended). Consequently, we are really up against the wall now. We need courageous, superhuman really, political will and global consensus, turning every conventional notion of how things used to work upside down. We need a fast and effective campaign to inoculate our economies against the effects of shifting away from fossil fuels as fast as possible, just as fast and successful as the COVID-19 vaccination campaign.

The good news: Carbon neutrality is within reach. We are so close. That was our goal on our inaugural website in the mid 2000s. The Passive House Institute US declared its mission: making passive building standards code by 2020. 

For all intents and purposes, check! We effectively have achieved that goal in places that matter a lot, not as mandatory code but in the form of programs, incentives, local laws, alternative compliance paths: New York City, the State of Massachusetts, Washington State, Washington DC. And we initiated ASHRAE 227p. So, yes, on our way, check!!!!

And in its 2021 standards update, Phius made a very important decision – the flagship certification, while the zero energy passive baseline still exists – is now the Phius ZERO certification. I am so proud of our team, how far we have come as a community and how patiently we have built this shift together over the last 20 years. It is a marathon, not a sprint — sound familiar?

But we need to pick up the pace. Turning the entire building industry around is only step one. Even if we eventually build all new construction to our proven standards, decarbonize all buildings through deep retrofits, and decarbonize the energy supply, we still urgently need everybody’s help from the bottom up to take action.

That’s really what I’d like to discuss here. Start a discussion about meaningful personal action that can be taken by anyone who chooses to go in on this really important mission.

I’ll go first. Since all this has been a driving force in my entire life really, it has shaped my life path and my choices. Carbon neutrality requires rethinking and changing a few things.

In 2002, I decided that if I truly believed in the commons and fair share of resource distribution for everyone, I would have to walk the walk. 

I tried to determine the standard of living that could be attained by everyone in an equitable society while also meeting the carbon reduction goals required to adapt to and mitigate climate change. That meant reassessing everything in my life: where do my actions and life contribute to the problem and how can I fix it? Once you start thinking about it in this way it really ripples through everything. 

Let’s start with money. We all need to earn money to run our lives. Our economies run on oil. Every dollar in our pocket essentially represents wealth generated in some form by fossil fuels. The more dollars any one of us has, the more emissions you are essentially responsible for in your daily life transactions (carbon footprint by wealth category is another interesting topic, another blog). I decided to limit the money I was going to earn. And I decided to put the money I did earn back into the non-profit Phius to support market transformation toward zero energy buildings. 

I then, step by step, dialed in my living circumstances: how much space I was able to live in to stay within my fair-share space conditioning emissions budget, how much land around my house there should be and how I was going to use it (farming), my choice of car, vacation and travel miles, food choices…all had to be reassessed.

It was a process. But I’m happy to report that in 2021, reflecting over morning tea, I feel good. I feel really, really good about having achieved what I set out to do…at least in my personal life.

Smith House

Smith House

With little money to my name and no job at the time, I embarked in 2002 on building the Smith House like there was going to be no tomorrow if I did not do it. It was scary, but it turns out, where there is a will there is a way. 

The Smith House, 1000 sq ft, meant for three people, was built for being zero energy ready. In 2018, I finally added a 5 kW PV system, taking the house and about 10K electric car miles per year (a car which I don’t have yet) off the planetary carbon bill. 

What I overproduce in Urbana “pays” for my condo living in the city (since I am not using overproduction to drive). I never turn my heat or air conditioning on. It’s a small, but nice and comfy apartment, 30 minutes walking distance from everywhere I need to go. I have not been on planes, trains and automobiles in a long time and if I do get on I am conscious of each mile. 

I changed my diet, essentially vegan plus fish and an occasional egg. Looking at carbon emissions savings from those food choices…turns out they are very significant. I try to avoid the elevator, though, full disclosure, my apartment and office are both on the 14th floor, so that’s a challenge. Down is easier than up, let’s start there.

And…I’d like to deep energy retrofit my condo tower…already have a plan…but that for the time being will have to be done in the future.

What are your stories?

If you are interested in making similar changes, 2000-Watt Society is a great place to start.