It’s Here! The Phius Certification Guidebook v3.0

SONY DSCIn this week’s blog, Phius Associate Director Lisa White introduces the Phius Certification Guidebook v3.0 and explains how to get the most out of the newest guidebook iteration.

The Phius Certification Guidebook is the one-stop-shop for all things related to the Phius project certification program.

The guidebook contains information ranging from Tips for Designing a Low Cost Passive Building to Energy Modeling Protocols and What to Avoid. It continues to evolve alongside Phius’ growing certification program and standard updates. 

Guidebook CoverOne great reason to certify a project is to share knowledge with the passive building community, which accelerates growth. This guidebook is the keeper of that knowledge as well as lessons learned from the expanding base of certified projects. The Phius Certification team receives a myriad of questions from project teams related to unique circumstances and first-time design decisions that often require developing new guidelines and protocols to be applied on future projects — and those end up in the Guidebook. On top of that, the detailed review of projects throughout design and construction illuminates opportunities for the certification team to improve the guidance we provide to our constituents.

Version 1.0, released five years ago to support PHIUS+ 2015, clocked in at 87 pages. Version 2 followed to support PHIUS+ 2018 at 157 pages, and the most recent update, Version 3, supports Phius 2021, with 190 pages. The guidebook is a key resource for Phius professionals — but we’re often told it’s too long! I’m certain it can feel much shorter, and be incredibly useful, if you know how to navigate it. Anyone can get around a big city with the right map!

View this Table of Contents: Updates Summary which outlines what is new and updated in v3.0.

The document is split into 8 main sections followed by appendices.

The Sections

  • Sections 1 & 2 contain high-level information that is invaluable to first-time project teams and building owners/clients.
  • Section 3 is arguably the most important section, outlining all the certification requirements. Under Phius 2021, there are substantial updates to this section, most notably outlining the requirements of the performance and prescriptive paths side by side, as well as comparing and contrasting how each path handles items such as passive and active conservation strategies.
  • Sections 4 & 5 are key for setting expectations and understanding the workflows and fees associated with the certification process. There is a great high-level graphic showing three phases of certification steps at the beginning of section 4.
  • Section 6 is chock full of detailed energy modeling protocol. This section is laid out in order of the WUFI® Passive tree structure, guiding modelers top down with information ranging from early design defaults to detailed inputs for unique situations.
  • Sections 7 & 8 outline monitoring building performance as well as additional certification badges available. 

The Appendices

    • Appendix A is a consolidated resource about renewable energy. It explains how it can be used in the calculation of source energy use, and guidelines for procuring off site renewable energy.
    • Appendix B is likely the most often overlooked section, while also the appendix most referenced in project certification reviews. This appendix outlines the prescriptive approach to achieving moisture control in opaque assemblies. This most recent update splits this appendix into four types of guidelines: general, for walls, for roofs, and for floors. Do yourself a favor and vet the assemblies used on your next project (certifying or not!) against the guidelines listed here.
    • Appendices C & D are carried over from the previous version, outlining how to assess when a cooling system is recommended (App C) and internal load equipment tables for non-residential buildings (App D).
    • Appendices E, F, & G are great resources for the Phius Certified Rater or Verifier.  Appendix E is the Phius Certified Rater/Verifier manual. It outlines detailed technical inspection and field requirements, post-construction requirements, as well as how to maintain or renew the professional credential. Appendix F describes the procedure to prepare the building for airtightness testing, while Appendix G provides the onsite testing requirements for multifamily buildings.
    • Appendix H describes the Phius 2021 target setting updates, similar to what was found in the previously released “Standard Setting Documentation”
    • Appendix I is new to this version, and holds important information — most notably tips for passive building design about keeping costs low, assembly & window selection, and ventilation systems.
    • Appendix J talks about Co-Generation on-site, and how it affects the source energy factor for natural gas or grid electricity used on-site (depending on how the co-gen is prioritized). This is carried over from a previous version.
    • Appendix K is brand new, outlining definitions and requirements for electric vehicle charging infrastructure to supplement the requirement outlined in Section 3. EV capability is required in some fashion for all residential Phius 2021 projects.
    • Appendix L is also brand new and only applies to Phius CORE projects, as it describes electrification readiness requirements for combustion equipment. As a reminder, fossil-fuel combustion on-site is only permitted for Phius CORE projects, and not allowed for projects pursuing Phius ZERO or Phius CORE Prescriptive.
    • Appendix N closes out the document with normative information. Most notably, N-7 describes many of the underlying formulae for the Phius CORE Prescriptive path which is brand new to Phius 2021. It also contains the formulas and calculation methods used for lighting and miscellaneous electric load calculations, for example.

General Tips

  1. Utilize the Table of Contents and click to the section you need.
  2. Use the ‘find’ function (Ctrl+F) when in doubt of where to look to search for keywords. If taking this route, take note of what section your results are in – for example, is it a requirement or just informative?
  3. Bookmark the Guidebook link! (And follow Phius’ newsletters to be sure you’re aware when new versions are released).
  4. If you are the…
    1. Building Owner/Client — read Sections 1.1-1.4 and Appendix I-1 and review the graphic on the first page of Section 4.
    2. Project Team Member — read through Section 3 one time in its entirety if Phius Certification is a goal of the project. It’s only 18 pages, there are tables and pictures, and you can make it an excuse to have a beer.
    3. Project Submitter — read through Section 4 one time to set expectations, you will be happy you did. Also note Section 2.2, “Yellow Flag” items.
    4. CPHC / Energy Modeler — bookmark Section 6 for reference as you work through the WUFI Passive model.
    5. Phius Certified Rater/Verifier — bookmark Appendix E & F.
    6. One who loves the nitty gritty of passive building — print it, read it cover to cover.

Each iteration of the Guidebook reflects the aggregate knowledge gained by your efforts. Thank you! Feel free to use the comments section below for suggestions and questions.

Breakthrough Project Aims to Bring Flood of Zero-Energy Housing to Milwaukee

 

 

Shilpa 12Shilpa Sankaran is a consultant driving adoption of innovations in the built environment and the health of the planet, societies, and people. She is currently an advisor to the City of Milwaukee, who is spearheading a breakthrough public-private partnership in offsite affordable, zero-energy housing production. Previously, Shilpa was the Executive Director of the Net Zero Energy Coalition, co-founder of the REALIZE prefabricated zero energy retrofit model, and co-founder of ZETA Communities, a modular zero energy buildings fabricator in Sacramento.

In the wake of a global crisis, a cocktail of pandemic, economic distress, political turmoil, and heightened awareness of social inequity, we sit in the still point of opportunity for change.

Cue the City of Milwaukee. This city has seen its share of change — including economic and social trauma from the depletion of its manufacturing culture — and it has shown amazing resilience through grit and innovation. Now, we see revitalized and thriving new neighborhoods, innovation in water and sustainability, and new industries popping up throughout the city.

MilwaukeeMilwaukee, led by Mayor Tom Barrett and the City’s Environmental Collaboration Office (ECO), is spearheading a project that could bring back the original spirit of the city, and serve as a model for other cities around the country. The City is seeking a partner to locate a factory that will build zero-energy housing as part of public-private social enterprise.

On the surface, this may sound like just another construction solution, but Milwaukee sees it as so much more. This one solution will create income opportunities and green skills development for the residents of one of the most economically depressed areas in the country. These very residents will also have new home ownership opportunities, and will be able to proudly support their own health and the health of the planet with zero energy homes. Local manufacturing will take place in this same area — the 30th Street corridor — restoring a culture of industry, while revitalizing the neighborhood.

The goal is to target Phius Certification for all buildings, which requires certification under EPA ENERGY STAR, DOE Zero Energy Ready Homes and EPA Indoor airPLUS as co-requisite programs.

To attract an aligned partner, the City of Milwaukee is deeply committed to lowering barriers to entry and supporting the long-term success of a factory partner with financial, training, pipeline, and policy and codes support.

The first step is garnering industry interest through a Request for Information (RFI) which is due on July 12th. Later this summer, a Request For Proposal (RFP) will be issued, and the hope is to secure a partnership by the end of 2021 or early 2022. Following the design and construction of demonstration unit(s), the goal is to open the factory for full production by 2023.

If you are interested in participating in this process, please submit your Intent to Respond, and respond to the short RFI by July 12th. The RFI can be found here.

On International Climate-Specific Passive Projects

Andres-vert3Phius Certification Team Member Andres Pinzon, PhD, explores the process of passive projects being built outside of the United States.

“Qué es una casa pasiva?” reads the cover of the drawing set of the Merlot House, a project submitted by CPHC Ignacio López pursuing PHIUS+ 2018 certification in Baja California-Mexico. This project — the first in this country — adds to the growing interest of Phius certification across latitudes.

During a regular week at Phius, we move between reviews on different climate zones, building functions and building types, assessing data from residential and non-residential, new construction, or retrofit. 

At first sight, the path toward certification may look intimidating, and we at Phius know that. Our team offers guidance and support for project submitters, especially when working on their first projects (overseas or not). The reviewers go above and beyond in helping project teams meet the specific, wide-ranged, and performance-driven goals of their buildings. This process offers achievable steps for certification within the context of each project.

How does Phius do it? The process includes: rounds of review, real-time feedback, conference calls, online open resources, etc. Phius tailors this process by providing solutions in compliance with certification, looking for red flags, and pointing out paths to avoid. This allows us to work with clients, architects, engineers, building scientists, etc. on the critical aspects of certifying a project in a particular part of the world.

Here are some remarks from our experience working with projects submitted to Phius outside of the mainstream of US and Canada.

The first step is generally custom climate data, followed by calculating the project-specific performance targets. Using the appropriate climate data and performance targets are essential to accurately modeling and reducing energy loads. Phius generates custom climate datasets for project teams that accurately represent their current project’s location. For most locations, we have not had trouble finding a TMY3 station within a (80-km) 50-mile range.  

In addition to climate data, marginal costs of electricity ($/kWh) at the regional/national level are needed to calculate the custom space conditioning targets they will use for certification. With this, teams can begin to work on comprehensive design and energy modeling; aware of the demands and loads that are expected for their buildings. 

Phius has projects in places such as Japan, Colombia, Nigeria and Mexico, where Phius certification represents a third-party verification on a desired performance for energy use and high-quality housing (see post on Housing Equity). The accumulated experience of different situations helps Phius come up with new solutions for diverse challenges and pass that knowledge to teams in subsequent projects.  

For example, approaches on cooling and dehumidification seen in Phius projects in southern states can guide us on how to tackle larger demands and peak loads in projects in tropical areas of South America or Africa. We see this potential in aspects such as: the enclosure’s insulation and airtightness, shading dimensioning and optimization to avoid overheating, and the proper selection and sizing of mechanical devices.  

Energy and carbon saving targets in buildings and operational budgets are a global concern. However, some information might be lost in translation when moving between countries, languages, cultures, or systems of measurement. In this sense, Phius is working on expanding the limits on a technical language that might hinder the domain of Phius projects.

Phius’ CPHC training is also offered and taught in SI units. In this way, professionals abroad who are interested in earning this credential can have access to material on building science principles, design exercises, and software tutorials prepared in the metric system. Furthermore, WUFI® Passive, the energy modeling software used for Phius certification, allows users to easily toggle between SI and IP units any time during the process.

More actions are in development within the idea of expanding the Phius community abroad. It is exciting to see creative and innovative approaches, integrating different sorts of information to make a high-performance building, such as the “bilingual” drawing set from the Merlot house. I cannot wait to attend the breakout session on international climate-specific passive projects at PhiusCon 2021 to continue the conversation.

Phius and Housing Equity: We Can Do This

What do we mean when we say equity in housing? Is it providing a place for all unhoused populations to live? Is it creating enough resources so that everyone has housing security, no matter their class, race, or age? What about high quality housing?

Finch Cambridge, an affordable housing project that won Best Overall Project in Phius' 2020 Design Competion.

Finch Cambridge, an affordable housing project that won Best Overall Project in Phius’ 2020 Design Competion.

Homes and apartments built to the Phius standard are airtight, energy efficient, super insulated, and low maintenance. They are comfortable, quiet, and provide a quality of life. These dwellings provide hard-to-find clean, high quality air, because the ventilation brings in fresh, filtered air and exhausts the stale air, something the coronavirus pandemic has shown is essential to mitigate spread of the virus. Better indoor air quality produces better health outcomes for people with chronic conditions like asthma.

Does your definition of housing equity include the quality of housing? It does for Phius.

Comfortable, well-built, and sustainable homes do not have to be for only the upper class. This is a policy issue. The cities and states of our country owe it to low-income citizens to provide them with a home that keeps them safe, does not strain their finances, and improves their quality of life. Affordable multifamily passive housing has proven time and again that it can be achieved at the same cost as a less sustainable or less reliable home. Single-family homes are being delivered at costs that range from 5 to 10 percent more than conventional buildings. Everyone should live in housing that is reliable and resilient.

Affordable housing, how do we define that? Usually it means housing built for lower-income individuals and families, those on a tight budget. It should also mean housing that is affordable to maintain and to heat or cool. It is not affordable if the occupants have to make a choice between paying for food and paying their utility bills. Multifamily buildings built to the Phius standard use 40-60% less energy than a comparable building built to code, resulting in similar reductions to utility bills.

Homes built to the Phius standard are resilient and reliable. In 2021, the state of Texas froze when its power grid failed. The information from the passive houses we have from Texas show that the temperatures in the building never came close to freezing. Families would have been able to stay in their home and no pipes would have burst, saving hundreds if not thousands of dollars in repairs and replacement.

Imagine living in a home that maintains its temperature no matter the season outside; that weathers severe temperature swings, and costs you less money to live in. Did you feel your stress levels lower just a bit? Don’t your children deserve to live like that? Doesn’t everyone’s child deserve that? How about your parents too?

The infrastructure can be created. This country can do it for its people.

How do we do this? Reach out to your city council, to the people who represent you on the most local level, to educate them about the benefits of passive building to the community.

Many states, like Massachusetts and New York, already have incentives for energy efficient homes. In Pennsylvania, 7 Phius certified projects, representing over 350 units of affordable housing, have been built and shown to be cost-effective. Incentives in Massachusetts have led to the construction of 8 Phius low-income projects with almost 550 units. These projects have come in at between 1.5% and 2.8% above building code. Massachusetts, building on this success, just passed a progressive energy bill that will push it’s already progressive buildings sector forward.

The change is possible and we all deserve it, including those who never even seem to get a piece of the pie.

Many Cereals, One Cereal Aisle

GW

Graham Wright

The PHIUS+ standard has evolved on a very different path than the PHI standard, and they are in no way equivalent. That’s by design, based on deliberate decisions and building science, with a focus on cost-optimization and climate specificity. Still, confusion remains in some corners of the marketplace, confusion that is worsened by articles like the one that appeared in BuildingGreen a few weeks ago. (You can also read Chris McTaggart’s rebuttal at Building Green.)

Here, to provide a full accounting of how and why the standards are different, is PHIUS Senior Scientist Graham Wright. 

At the Seattle PHIUS annual conference in 2017, one of the keynote speakers, Doug Farr, came to a line in his speech saying “many boxes, one cereal.” The point he was making (as I heard it) was that there are a whole lot of “green” and “sustainable” and “high-performance” building programs, badges, and ratings all competing for attention or mind-share, and that this was not good because it made for a diffuse effort toward solving our sustainability problem. What you have, he said, is like a whole bunch of different cereal boxes on the shelf, but inside it’s “all kind of the same stuff.” It would be better if all these different outfits would get together to advocate with one voice.

While I agree that joining forces sounds like a good idea in general, personally I think he got the rest of it almost exactly backwards. For one of the other keynote speakers, Eric Werling, one of his major points was that the details matter. In terms of cereals, it is not all the same stuff — muesli is different from oatmeal or cornflakes or Cap’n Crunch®. We do not have many boxes — one cereal, rather we have many cereals, one cereal aisle. The bacon and hash browns are in another aisle. For the building industry the name of that aisle is probably “Green Building,” I think that’s the broadest and most recognizable term for what we’re talking about, and could encompass high-performance, sustainable, resilient, natural, living, green, healthy, net-zero, and of course, passive. Things it does not encompass but at most only overlaps with would be for example: secure, co-housing, modernist, Usonian, affordable, vernacular, brutalist, social, connected, low-tech and so on — these are quite different “programmatic” considerations and have their own aisles in the pan-galactic building store.

One of these things...

One of these things…

In the case of cereals the reason there are different kinds is because tastes differ, but also because values differ — if I value yumminess above all I will get Cap’n Crunch, but if I value avoiding the family curse of heart attack above all, I will get the oatmeal. In Green Building even more so, we have different programs because of differences in truly heartfelt values. Both builders and their clients bring different values to their meetings — if I am concerned about not polluting the environment, respecting brother salmon, I will go into natural building; if my children are prone to allergies I will look for healthy-home builders; if I

...is not like the other.

…is not like the other.

hate paying utility bills I will go for net-zero, and so on. So it is useful to have badges and rating systems corresponding to these different values or priorities, for matchmaking between builders and buyers of buildings.

Back to the common ground for a moment. It has dawned on many people I think that these different aspects of green building are connected, by a general crisis of climate and sustainability with industrial civilization, that we do have common ground in making the point that we must stop using fossil fuels and putting CO2 and other pollutants into the environment and doing so much mining, if we expect to also keep getting things like fish and wood and well water out of it at the same time, and that we might be able to form a chorus of voices calling for this.

I know of three such separate “common voice” efforts (heh) arising in the last couple of years:

PHIUS has joined Shift Zero, which has come together around the Architecture 2030 definition of zero net carbon buildings. Washington State already has one of the strictest state building energy codes, more stringent than IECC 2015, according to ACEEE, but at the initial Shift Zero summit meeting, the item “Roadmap to a Net Zero Building Code” was chosen as a major focus. This is relevant to us for two reasons: 1) We believe passive building should be on that road! The PHIUS vision statement is to “make high-performance passive building commonplace,” which it would be if it was Screen Shot 2019-08-27 at 1.46.00 PMcode. Also, 2) although it’s not spelled out in the short mission statement on the web site, the long version in the business plan speaks of the climate crisis and how passive building can both mitigate and adapt to climate change. We concur that as a society overall we must get to Zero, not just net-zero but Absolute Zero in terms of emissions, or 100% renewable energy to put it the other way. (The PHIUS Technical Committee has already taken this definition of Zero Net Carbon into consideration for our PHIUS+ 2018 standard update.)

Moreover, we are pursuing an ANSI-approved passive building standard, via the ASHRAE Standard Project Committee 227P. Participation in Shift Zero should allow us to both contribute to and be informed by a Shift Zero effort on Washington State code.

Our aim here is not to “get PHIUS written into WA code”, nor to “get an ANSI stamp” on PHIUS+ 2015 or even 2018, but to develop something that is both rigorous and more flexible, and of more enduring value. Our current standard is mostly performance-based, that is, based on modeled energy use. This requires modeling protocol, modeling software, and training in using it, for both project planners and verification/enforcement caseworkers. The vision for the ANSI/ASHRAE passive standard is that it would use a combination of prescriptive, performance, and outcome-based compliance paths to support the whole range of project scales – from small projects in backwater jurisdictions with few planning or enforcement resources to large projects in capitols that could take on custom cost-optimization studies. The value of PHIUS+ lies not only or even mainly in the current criteria but rather in the principles and methods underlying them, such as the priority on passive measures and conservation, the constrained cost-optimization for the heating and cooling criteria or the fair-share and national-solidarity principles for total energy use.

The “A” in both ASHRAE and ANSI stands for American. The ANSI mission statement is U.S. focused and the web page has a U.S. flag image. But the ASHRAE mission states pointedly that while they started out in U.S. they now have worldwide membership and global services, advancing sustainable technology for the built environment.

An ASHRAE passive building standard then, ought to be serviceable globally (at least in those parts of the globe that have building professionals.)

In my opinion PHIUS brings a track record of experience and care to this effort, as well as integrity, and humility.

As most of you will know, we started out practicing an “International standard” from PHI in Germany, applying it in the U.S. Our first major adaptation was in 2012 with the addition of greatly expanded quality assurance requirements from U.S. DOE programs. We found that the U.S. building industry simply needed a lot more guardrails on quality. This was in essence a cultural adaptation, as was our early support for the inch-pound unit system. Our second major change was a climateadaptation, in 2015 with the elaboration of the climate-specific criteria for heating and cooling.

To make a long story short, we found that the PHI heating and cooling criteria became disconnected from the principle of economic feasibility that supposedly underlay them, when applied to most climates in the U.S. and Canada, and we set out to redeem that promise. That disconnect affected both the heating and the cooling criteria in different ways, and was apparent in the data of PHI’s own climate parametric study of 20111. As a result of that study, PHI indeed adjusted their cooling criteria, adding to the (not climate specific) fixed base cooling demand a substantial and variable allowance for dehumidification (fair enough, there are not many passive measures that do this.) But the heating criteria still only made sense in one climate, and this was never fixed. Most of the U.S. being heating-dominated we thought that important and so went to work on it in 2013-14.

To make the story just a bit longer, what I would call the first-generation passive builders were splinter group off of the “passive solar” or “solar home” movement in the 1970s. Their differentiation was less mass-and-glass, less gain, more insulation, build light and tight. They tended to speak of “superinsulation” to differentiate themselves from the passive solar people, but passive building really is a better word for it; it’s not just about insulation. The canonical work summing up the first-generation ideas is The Superinsulated Home Book. Their concept of what counted as such a home was a little vague – they speak of reducing the heat losses until the building really starts to “act different” – but the definitional ideas included both low annual heating bills and low peak heating loads, that is, very small heating system capacity required, even to the point where a dedicated furnace was no longer needed; “just steal a little heat from the water heater.” This aspect I think forms the appeal to the heart of the “passive-house flavor” of green building cereal — the “self-heating building,” the “furnace-free house.”

The Superinsulated Home Book

The Superinsulated Home Book was published in the early 1980s, just as the bottom fell out of the solar movement stateside. The torch passed to Europe, and when PHI wrote their definition of a passive house, they focused on that low peak heat load concept and drew a line in the sand on how low it should be — basically, the point where the ventilation and heat distribution systems could be combined. This was reasonable and it does give a target number for design heat load, about 10 W per m2 of floor area, that would apply everywhere, at least in any heating-dominated climate. But when it came to writing certification criteria, an alternate compliance path was added by which one could meet a corresponding annual heating demand. Corresponding that is, in the climate of central Europe. This is the notorious 15 kWh/m2 or 4.75 kBtu/ft2, per year. If a building was designed to meet a peak of 10 W/m2 in central Europe, this is the resulting heating demand.

The problem, I say the glaring problem, is that that alternate criterion doesn’t correspond to the peak load definition in other climates. Again, this is according to PHI’s own study from 20111-2012. They took a study building, moved it around to a lot of different climates, adjusted the upgrades to meet the 10 W/m2 peak heat load definition, and plotted the resulting annual heat demand. It varied a lot, generally increasing as the annual average temperature got lower, but there was a lot of scatter, because annual temperature and peak load design temperature aren’t necessarily that closely related, it depends a lot on how close you are to the ocean.

Nevertheless, the PHI heating criteria remained the same two numbers for everywhere, either 10 W/m2 peak, corresponding to their definition, or 15 kW/m2.yr, which mostly doesn’t. Why? I have always darkly suspected that it is because in continental interior climates, the design temperatures for peak heating load are quite low, making the 10 W/m2 much the more difficult of the two numbers to meet. I think they could tell that it would be impractical for single-family dwellings, even attached like a townhouse end unit, to meet the ostensible definition, and so left the 15 kWh/m2 alternate in there as a close-enough cheat. I say it drives bad design, over-glazing, because solar gains do more to lower the annual heat demand than the peak load. (We showed evidence of this in our PHIUS+ 2015 development report published by NREL.)

Therefore, as I mentioned above, after a few years of applying PHI’s standard in the U.S., and noticing this lack of integrity with the heating criteria, we embarked on a reconsideration of the whole thing, in 2013-14. To my recollection, it just so happened that PHIUS and PHI both officially made standards announcements on the same day, March 15, 2015. PHIUS did make changes to all 3 “pillars” or marquee-level criteria — space conditioning, primary energy, and air-tightness. But, as evidenced by what got elaborated, it was clear that PHI had spent most of 2014 working on primary energy, the big change was the new and more nuanced Primary Energy Renewable (PER) metric, while PHIUS had spent most of that time working on new and more nuanced heating and cooling criteria. To go ahead and put a fine point on it, PHIUS took more care in 2014 with the core concept — the passive measures and how far to push them to drive down the heating and cooling loads.

(I must say it was irksome to get comments like, “sounds like PHIUS+ 2015 is just about bolting on some PV.’ when all we had done was put PV on the same footing as solar hot water, while PHI had spent the whole year working on renewable energy.)

Therefore, I think it is fair to say as a general matter, PHIUS has learned the importance of both “cultural” factors and climate factors to the development of passive building standards, and will bring this to an ANSI/ASHRAE standard development project. The approach to climate I think we have a fairly good handle on, and the multiple compliance options mentioned above should be able to accommodate various “building delivery processes”.

Lately it seems, we hear a lot of glossing over the differences between PHI and PHIUS. “It’s all good” kind of talk, “the differences are for nerds” and the like. At some level, this is fair enough. Yes we heart the furnace-free house, yes we like the EN/ISO 13790 monthly method for annual heating and cooling calculation and the EN 12831 for peak heating load, no we are not trying to be “lite” in general; honestly we get as much “we’re going with PHI because it’s easier” as the other way around.

But at some level the details do matter. In particular when it comes to talking about building energy code, mandatory, enforcement, permits approved or denied, people are going to want to know quite specifically what are the rules, yes?

Let’s think about the most simple and straightforward proposal I’ve heard for a building energy code: enacted in a skit by Henry Gifford and Chris Benedict of New York City, they propose the code consists of just a criterion on the design heating system capacity, that is, a peak heat load. Even with just that, you can see it would take some pages to spell out: by what method or methods of calculation? Do the methods vary for residential versus nonresidential buildings? Are solar gains or thermal mass to be credited with reducing peak loads? By what method are the design temperatures to be determined? Shall these be historical or forward-looking at climate change? Who is qualified to perform the load calculations and to review them? Does the criterion apply zone-by-zone or to the building as a whole? What if I have multiple buildings served by a central system?

So yes, at some level it is fair to say, PHI and PHIUS that is blueberry muesli, all good. But when it comes to the Food and Drug Administration, and to many customers, it is going to matter what is in those blueberries exactly. Are those real blueberries or fake f@#$% blueberries? Are the real blueberries GMO Roundup-ready blueberries or organic blueberries?

At PHIUS I think we have demonstrated some care and forethought in adapting our program and standards in the direction of suitability for incentives and codification in North America, while remaining faithful to the heart of the passive building concept. We will bring this experience and intention to the development of a more widely/globally applicable ANSI/ASHRAE Passive Building Design Standard With Path to Zero Emission or 100% Renewable Energy Society or the like.

ASHRAE requires a fairly public and transparent process and we seek the participation of the best building energy experts anywhere who find this vision agreeable — including PHI, with just one proviso: that 15 kWh/m2 everywhere is not going to make it, that is fake blueberry and we cannot have it in this muesli. If you can let that one thing go at last, the possibilities for fruitful collaboration open up. As those conveners I mentioned in Bonn, Seattle, and Portland have been suggesting, let us get the oars in the water and try to row in a more coordinated way at the goal of a Zero emission / 100% renewable built environment.

1 Schneiders, J.; Feist, F.; Schulz, T.; Krick, B.; Rongen, L.; Wirtz, R. (2012). Passive Houses for Different Climate Zones. Passive House Institute and University of Innsbruck.